| 
Математик Теренс Тао (Terence Tao) из Калифорнийского университета продвинулся в доказательстве малой (тернарной) проблемы Гольдабаха. Об этом сообщает Nature News. Препринт статьи доступен на сайте arXiv.org.
 
Название проблем Гольдбаха носят сразу две задачи. Первая, сильная или бинарная проблема звучит так: доказать, что всякое четное число больше четырех представимо в виде суммы двух простых. Вместе с гипотезой Римана эта проблема входит (под номером 8) в знаменитый список проблем Гильберта. Слабая или тернарная проблема звучит следующим образом: доказать, что всякое нечетное число больше пяти представимо в виде суммы трех простых. Из справедливости бинарной проблемы следует справедливость тернарной (в качестве одного из простых в разложении достаточно взять тройку).
 
Наибольшие продвижения в решении сделаны в направлении тернарной задачи. Так, в 1937 году математик Иван Виноградов доказал, что все достаточно большие (то есть большие некоторого фиксированного N) нечетные числа можно представить в виде суммы трех простых. Его учеником Константином Бороздиным было показано, что граница N в работе Виноградова составляет число порядка 106 846 168. Позже она неоднократно уменьшалась и в настоящее время лучший порядок оценки - 1043 000,5.
 
Полученные результаты все еще не позволяют проверить исключительные случаи теоремы Виноградова на компьютере, поэтому работа в этом направлении ведется достаточно активно. Теренсу Тао удалось доказать, что всякое нечетное число представимо как сумма не более чем пяти простых чисел. Фактически это ближайший к тернарной проблеме Гольдбаха результат из всех возможных - простые числа больше двойки нечетны, поэтому нечетное число не может быть представлено в виде суммы четырех таких чисел (сумма будет четной). Следующее улучшение результата - сумма трех простых чисел, то есть малая проблема Гольдбаха.
 
Что касается бинарной проблемы Гольдбаха, то про нее известно много меньше. В настоящий момент есть теорема Ромаре 1995 года, которая утверждает, что любое четное число представимо в виде суммы не более чем шести простых чисел. Из этого результата легко получается, что, в предположении истинности тернарной проблемы Гольдбаха, всякое четное число представимо в виде суммы не более чем четырех простых чисел.
 По материалам lenta.ru 
  
  Другие новости по теме 
        У здания колледжа на юго-востоке Италии взорвали бомбу
    В Греции пройдут новые выборы в парламент
    На Кипре убили российскую туристку
    Израильский телеканал построил студию-бункер
    Мужчина поджег себя перед судом во время процесса над Брейвиком
    РФ передала Индонезии образцы крови родственников погибших на Superjet
    Экс-главреда News of The World признали виновной в сокрытии фактов от полиции
    Европейцы впервые обстреляли пиратов на территории Сомали
    Северная Корея перестала глушить GPS-навигацию  гражданских самолетов
    Франсуа Олланд принес президентскую присягу
    Британцы перестали наказывать за ввоз в страну марихуаны
    China Daily начнет выходить в Африке
    Бывшего президента Монголии выпустили под залог
    Закрытый молдавскими властями канал начал вещание в интернете
    Над Тихим океаном сформировался первый в сезоне шторм
    Район крушения Superjet-100 закрыли из-за торговцев лапшой
 
   
  Смотрите также:  В мире,  Бизнес,  Общество,  Спорт,  Искусство,  Авто,  Hi-Tech,  Здоровье,  Путешествия,  Вокруг света,  USA,  Россия |   | 
  
 
 
 |